Word Representations

Slides adapted from Claire Cardie and Yoav Artzi

Input to the neural networks?

Word Similarity

Task: given two words, predict how similar they are

The Distributional Hypothesis:

Distributional Hypothesis (J.R. Firth 1957)

- Words that occur in similar contexts tend to have similar meanings
 - "You shall know a word by the company it keeps"
 - "If A and B have almost identical environments "
- Words which are synonyms tend to occur in the similar context

Intuition of distributional word similarity

• Suppose I asked you what is **tesgüino**?

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk

- From context words, humans can guess tesgüino an alcoholic beverage like beer
- Intuition for algorithm:
 - Two words are similar if they have similar word
 contexts

- Goal: Learning representations (embeddings) of the meaning of words, directly from their distributions in text
- Important for NLP applications that make use of meaning
 - Question Answering, Summarization, Detecting paraphrases or plagiarism and dialogue

Term-document matrix

• Count of word w in a document d:

- Each document in a count vector in $N^{\rm v}$

	D	ocumer	it		
	As You Like It	Twelf	th Night	Julius Caesar	Henry V
battle	1		0	7	13
good	114		80	62	89
fool	36		58	1	4
wit	20		15	2	3

∽Word / Term

Word-word matrix

- Instead of entire document, use smaller context
 - Paragraph
 - Window of ~4 words
- Word is not defined by counts of context words

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	
digital	0	•••	1670	1683	85	5	4	
information	0	•••	3325	3982	378	5	13	

TF-IDF: Weighting terms in the vector

- Not all words are equally important
 - Some words just co-occur frequently with many different words (e.g. the, they, it)
- **Term Frequency:** Words that occur nearby frequently (maybe *pie* nearby *cherry*) are more important.
- Inverse Document Frequency: Words that are too frequent may be unimportant (e.g. *the*, *it*, *he*, she).

Measuring similarity

- We have words *w* and *v*
- How do we measure their similarity?
- Dot product or inner product from linear algebra dot-product $(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i$ • High when two vectors have large values in same
 - dimensions
 - Low (actually 0) for orthogonal vectors

Problem with dot product

$$dot\text{-}product(\vec{v},\vec{w}) = \vec{v}\cdot\vec{w} = \sum_{i=1}^{N} v_i w_i$$

ΛT

Dot product is longer if the vector is longer. Length:

$$|\mid \vec{v} \mid| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

- Vectors are longer if they have higher values in each dimension
 - More frequent words cause higher dot products
 - Bad since we are sensitive to word frequency

Solution: Cosine similarity

 Just divide the dot product by the length of the two vectors!

Visualizing cosine similarity

Sparse vs. Dense vectors

• Sparse

- Most entries are 0
- Vectors are long (|V| = 20,000 to 50,000)

• Alternative: Dense

- Most elements are non-zero
- Vectors are short (|V| = 25-1024)
- Turns out to be very effective

Next-word prediction task

input # 1 input # 2 output
Thou shalt

Thou shalt not make a machine in the likeness of a human mind

Thou shalt not make a machine in the likeness of a human mind

Sliding window across text

thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	

Dataset				
input 1	input 2	output		
thou	shalt	not		
shalt	not	make		

Thou shalt not make a machine in the likeness of a human mind

Sliding window across text

thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	

Dataset

input 1	input 2	output
thou	shalt	not
shalt	not	make
not	make	а
make	а	machine

Look both ways

Magd drove to the beach in a car

Magd drove to the beach in a red car

How to learn Dense vectors?

- Algorithms?
 - Skipgram

Magd drove to the beach in a red car on

Thou shalt not make a machine in the likeness of a human mind

thou	shalt	not	make	а	machine	

input word	target word
not	thou
not	shalt
not	make
not	a

Revisiting training process.....

New dataset

input word	neighbor word	target
not	thou	1
not	shalt	1
not	make	1
not	a	1

• What can go wrong with this?

Need negative examples

Need negative examples

- How do we pick these negative examples?
 - Pick randomly from vocabulary

Embedding Apple Vocab size Zebra

Embedding size

Context

Embedding size

Model

input	output	target
not	thou	1
not	apple	0
not	taco	0

input word	output word	target	input • output	sigmoid()	Error
not	thou	1	0.2	0.55	0.45
not	apple	0	-1.11	0.25	-0.25
not	taco	0	0.74	0.68	-0.68

• Goal: maximize the corpus probability

$$\arg\max_{\theta} \prod_{(w,c)\in D} p(c|w;\theta)$$

where:

$$p(c|w;\theta) = \frac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_{c'} \cdot v_w}}$$

if d is the dimensionality of the vectors, we have $d \times |V| + d \times |C|$ parameters

Skip-gram algorithm (all together now)

- 1. Treat target and neighboring context as positive examples
- Randomly sample other words to get negative samples
- 3. Use **logistic regression** to train a classifier to distinguish neighbor/not neighbor
- 4. Use the **regression weights** as the embeddings

What do these embeddings capture?

- Similarity
- Word analogy

Demo: <u>https://colab.research.google.com/drive/1bj0rwGQdBtTgSVzPpB_-</u> SJpp9EUj3eeX?usp=sharing

What can go wrong?

- What's wrong with learning a word's "meaning" from context?
- Does this depend on what data we are learning from?

What can go wrong?

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{king}} - \overrightarrow{\text{queen}}$ $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$ Extreme *she* occupations 1. homemaker 3. receptionist 2. nurse 5. socialite 6. hairdresser 4. librarian 8. bookkeeper 9. stylist 7. nanny 10. housekeeper 11. interior designer 12. guidance counselor Extreme *he* occupations

- 1. maestro
- 4. philosopher
- 7. financier
- 10. magician

- 2. skipper
- 5. captain
- 8. warrior
- 11. figher pilot

- 3. protege
- 6. architect
- 9. broadcaster
- 12. boss

https://arxiv.org/pdf/1607.06520.pdf

What can go wrong?

Racial Analogies			
$black \rightarrow homeless$	caucasian \rightarrow servicemen		
caucasian \rightarrow hillbilly	asian \rightarrow suburban		
asian \rightarrow laborer	$black \rightarrow landowner$		
Religious Analogies			
$jew \rightarrow greedy$	$muslim \rightarrow powerless$		
christian \rightarrow familial	$muslim \rightarrow warzone$		
$muslim \rightarrow uneducated$	christian \rightarrow intellectually		