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Er liebte zu essen .
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Attention Is All You Need (Vaswani et al., 2017)
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Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature.


https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Why Transformers

= Ebe New York Eimes Acoount

Incredibly powerful
when trained on
massive amounts of

natural language text. Meet GPT-3. It Has
Learned to Code (and Blog
and Argue).

The latest natural-language system generates tweets,
pens poetry, summarizes emails, answers trivia
questions, translates languages and even writes its own
computer programs.

NYT 11/24/2020



GPT-3

Built by OpenAl (funded by Microsoft, Google, FB)
Trained a Transformer to do standard language modeling, i.e. next word

prediction
e GPT-3 is a tremendously powerful text generator

It was openly released immediately...fearing misuse (e.g. fake news construction).
- GPT-2 was released in November of 2019. (Available via huggingface.com)

- GPT-3 (175billion) available via an API offered by Microsoft (not free). Now
Codex is free.



THE

Transformers < "

e Introduced in Attention Is All You Need (Vaswani et al. NeurlPS 2017)
e A purely attention-based architecture (highly parallelizable), i.e. no recurrence
e Deep model for NLP (12 layers)

e Originally envisioned for seq2seq tasks (encoder is 6 layers, decoder is 6
layers). The encoder and decoder are the same “architecture” applied
differently



Transformer - Key ldea

In RNN, the first token is linked to next token, and so on, using RNN unit.
RNN
OO0
10

In Transformer, every token is linked to all other tokens using self attention.

Self-attention

https://d2l.ai/chapter_attention-mechanisms/self-
attention-and-positional-encoding.html
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Transformer - Architecture Overview
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Transformer - Self Attention
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Transformer - Self Attention
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Transformer - Self Attention
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Transformer - Self Attention
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Transformer - Self Attention

Q: Query
K: Key
V: Value
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Transformer - Self Attention

Calculate Attention scores: between Q: Query and K: Key
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Transformer - Self Attention

Each word is attended to all other words.
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Transformer - Self Attention
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Transformer - Self Attention
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Transformer - Multi-Head Self Attention
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Transformer - Multi-Head Self Attention
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https://jalammar.github.io/illustrated-transformer/
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[SEP]
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Transformer - Multi-Head Self Attention

If we add all the attention heads to the picture, however, things can be harder to interpret:
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Transformer Layer
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Transformer
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Transformer — decoder side
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Transformer - Architecture Overview
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Transformer — decoder side
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Transformer — decoder side

® The self attention layers in the decoder operate in a slightly different way than the one

in the encoder:
O Inthe decoder, the self-attention layer is only allowed to attend to earlier positions in the output sequence.

o  The “Encoder-Decoder Attention” layer works just like multiheaded self-attention, except it creates its Queries

matrix from the layer below it, and takes the Keys and Values matrix from the output of the encoder
stack.

Decoding time step: 1(2)3 4 5 6 OUTPUT

i

V. ( Linear + Softmax )

l ENCODERS ] l DECODERS ]
EMBEDDING * * * *
WITH TIME T Y R I
SIGNAL
EMBEDDINGS [0 [OOO0 O o
o suis étudiant PREVIOUS
INPUT Je OUTPUTS 31

https://jalammar.github.io/illustrated-transformer/



Transformer — decoder side

e The Final Linear and Softmax Laver

Which word in our vocabulary
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Transformer — decoder side

e The Final Linear and Softmax Laver
Which word in our vocabulary

. . . .. am
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https://jalammar.github.io/illustrated-transformer/
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@)

lllustrated-transformer by Jay
https://jalammar.github.io/illustrated-transformer/
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Contextualized Word Embeddings

e Problems with word2vec/GloVe: single representation for each word.
e Contextualized Word Embeddings: representations depend on context.
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Other Components in Transformers

Residual Connection

Layer Normalization

Masked Self Attention in Decoder
Encoder-Decoder Cross Attention
Sinusoidal Positional Encoding

36



Residual Connection

Residual Connection (He et al., 2016)
e Add input to its output
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https://arxiv.org/abs/1512.03385

Layer Normalization
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Layer Normalization (Ba et al., 2016)
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https://arxiv.org/abs/1607.06450

Residual Connection & Layer Normalization

e To put them together
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Masked Self Attention in Decoder

e In encoder, we can always look at all input words.
e In decoder, we can only look at previous words.

@)

That means, we need to "mask" future words when
performing attention.

Words are blocked for attending to future words during
training.
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Encoder-Decoder Cross Attention
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Positional Encoding

Output
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e There is no recurrence (RNN) and no convolution (CNN). —
e Self-attention do not have order information.
e So we need positional encoding to bring position information.
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Sinusoidal Positional Encoding

e There are many different choices of positional encodings (Gehring et al., 2017)
o some are learned (BERT, Devlin et al. 2018) and some are fixed
o some for relative position and some for absolute position.
e In Transformer, we use Sinusoidal position encodings: fixed embeddings and can
generalize to any sequence length.
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https://arxiv.org/pdf/1705.03122.pdf

Sinusoidal Positional Encoding

e There are many different choices of positional encodings (Gehring et al., 2017)
o some are learned and some are fixed
o some for relative position and some for absolute position.
e In Transformer, we use Sinusoidal position encodings: fixed embeddings and can
generalize to any sequence length.
e Intuition: (4-dimensional position encodings for 16 positions)

0: 000 8: 000
| ¥ 00 1 9: 001
25 010 10 : 010
3: 011 11 011
4 : 100 12; 100
5% 101 13 : 101
6: 110 14 : 110
7: 1l d 2 15: 111

https://kazemnejad.com/blog/transformer_architecture positional_encoding/
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https://arxiv.org/pdf/1705.03122.pdf

Sinusoidal Positional Encoding
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https://kazemnejad.com/blog/transformer_architecture positional_encoding/
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Figure 2 - The 128-dimensional positonal encoding for a sentence with the maximum

lenght of 50. Each row represents the embedding vector E
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Sinusoidal Positional Encoding

() Q) sin(wg.t), ifi =2k . W = 1
pe = f)" = { cos(wg.t), ifi=2k+1 with 10000/
[ sin(w;.t) ]
t: position index cos{er-)
i dimension index sin(ws. t)
d: total dimension . cos(ws. t)
bt =

sin(wg/s- t)

| cos(wgyz-t) | 4.
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Sinusoidal Positional Encoding - Properties

e |t should output a unique encoding for each time-step (word’s position in a

sentence)
e Distance between any two time-steps should be consistent across sentences

with different lengths.
e Our model should generalize to longer sentences without any efforts. Its

values should be bounded.
e |t must be deterministic.

https://kazemnejad.com/blog/transformer_architecture positional_encoding/ 7



- _ ""u""""”||| ||
Positional Encoding w ||” |
S

e “Attention is all you need”: Our model should generalize to longer sentences without

any efforts. Its values should be bounded. Deterministic

e There are many different choices of positional encodings (Gehring et al., 2017)
o some are learned ?
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https://arxiv.org/pdf/1705.03122.pdf

Other Tricks in Transformers

e Subword Tokenization
e Optimizer
e Label Smoothing

49



OOV lIssue

How to handle unknown words, i.e., a word at test time that we’ve never seen in
our training data. It is also called OOV (out-of-vocabulary) words.

If we use word-level tokenization, we cannot have an index for unknown words,
and we cannot have a word embedding for unknown words.
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OOV lIssue

Old solution: replace low-frequency words in training data with a special token
<UNK>; then after training, we have a word embedding for <UNK>; if we have an
unknown word during testing, we replace it with <UNK>.

New solution: Subword tokenization.
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Subword Tokenization

Use Subword Units for tokenization.
Based on a simple algorithm called byte pair encoding (Gage, 1994).
First used successfully for NLP for machine translation by (Sennrich et al., 2016).
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Byte Pair Encoding

Perform pre-tokenization

word frequency
hug 10
pug 5
pun 12
bun 4
hugs 5

Form a base vocabulary: b, g, h, n, p, s, u

Slides Credit: Mohit lyer

https://huggingface.co/transformers/tokenizer_summary.htmi



Byte Pair Encoding

Count all the character pair.

word frequency
h+u+g 10
p+u+g 5
p+u+n 12
b+u+n 4
h+u+g+s 5

Slides Credit: Mohit lyer

character pair
ug
pu
un

hu

gs

frequency

https://huggingface.co/transformers/tokenizer_summary.htmi



Byte Pair Encoding

Count all the character pair.

word frequency character pair frequency
h+u+g 10 ug 20
p+u+g 5 pu 17
p+u+n 12 un 16
b+u+n 4 hu 15
h+u+g+s 5 gs 5

Slides Credit: Mohit lyer https://huggingface.co/transformers/tokenizer_summary.htmi



Byte Pair Encoding

Merge the most frequent character pair, i.e., ug, and add it to the vocabulary.

Then rotokenize and repeat this process.

The next to merge is ?

word frequency
h+ug 10
p+ug 5
p+u+n 12
b+u+n 4
h+ug+s 5

Slides Credit: Mohit lyer https://huggingface.co/transformers/tokenizer_summary.htmi



Byte Pair Encoding

Merge the most frequent character pair, i.e., ug, and add it to the vocabulary.

Then rotokenize and repeat this process.
The next to merge is un, so we add un to the vocabulary.

word frequency character pair frequency
h+ug 10 un 16
p+ug 5 h+ug 15
p+u+n 12 pu 12
b+u+n 4 p+ug 5
h+ug+s 5) ug+s 5

Slides Credit: Mohit lyer https://huggingface.co/transformers/tokenizer_summary.htmi



Byte Pair Encoding

Repeat until some fixed number of merges, or until we reach a target vocab size.

word frequency
hug 10
p+ug 5
p+un 12
b+un 4
hug + s 5

new vocab: b, g, h, n, p, s, u, ug, un, hug

Slides Credit: Mohit lyer https://huggingface.co/transformers/tokenizer_summary.htmi



Byte Pair Encoding

To avoid OQV, all possible characters / symbols need to be included in the base
vocab.

e This can be huge if including all unicode characters (size 144,697)!

e GPT-2 uses bytes as the base vocabulary (size 256) and then applies BPE
on top of this sequence (with some rules to prevent certain types of merges).

e GPT-2 has a vocabulary size of 50,257, which corresponds to the 256 bytes
base tokens, a special end-of-text token and the symbols learned with 50,000
merges.

Commonly have vocabulary sizes of 32K to 64K

Slides Credit: Mohit lyer
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Encoding and Decoding

Encoding

Sort the vocab from longest subwords to shortest subwords.
Go through the vocab, and replace the longest subword first.
This is very computationally expensive.

In practice, we can cache how popular words are encoded.

Decoding

In fact, how to determine word boundaries.
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Encoding and Decoding

Encoding
e Sort the vocab from longest subwords to shortest subwords.
e Go through the vocab, and replace the longest subword first.
e This is very computationally expensive.
e In practice, we can cache how popular words are encoded.

Decoding
e In fact, we will add </w> to each word to indicate word boundaries.
e For example, if the encoded sequence is [‘the</w>", “high”, “est</w>",
“moun”, “tain</w>"], we immediately know the decoded sequence “the highest

mountain</w>".
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Other subword Tokenization

Byte Pair Encoding
e merge by frequency
e used by GPT-2.

WordPiece (Schuster et al., 2012)
e merge by likelihood given by language models, not by frequency

e used by BERT.

SentencePiece (Kudo et al., 2018)
e All tokenization algorithms described so far have the same problem: It is assumed that
the input text uses spaces to separate words. However, not all languages use spaces
to separate words.

e SentencePiece can train subword models directly from raw sentences
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Can we don't do tokeni
Old solution: use <UNK>.

New solution: Subword tokenization

zation at all?

New New solution: tokenizer-free and directly operate on bytes!

e CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language

Representation. (Clark et al, 20
e ByT5: Towards a token-free fut

22)
ure with pre-trained byte-to-byte models.

Shuffle

Prediction Order g oaaa
Lk Loy l@.D
”‘Iﬂﬂ@@@@@@l@l@..l.l

Ald tty
Model ? MLM predictio
Inputs (85% of span: ) (10/ fp redictions)

.ﬂB@D@@@D.@IDBM

Figure 2: CANINE-C pre-training data preparation (§3.2.1). Character-wise predictions are made by an auto-

regressive transformer layer that predicts then reveals one character at a time, in a shuffled order.
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https://arxiv.org/pdf/2103.06874.pdf
https://arxiv.org/pdf/2103.06874.pdf
https://arxiv.org/pdf/2105.13626.pdf

Optimizer

Adam Optimizer with Linear Warmup Learning Rate

We used the Adam optimizer (cite) with 3; = 0.9, B2 = 0.98 and € = 102, We varied the learning rate over the course of
training, according to the formula: lrate = d;gfel . min(step_num‘0'5, step_num - warmup_steps‘l‘s) This
corresponds to increasing the learning rate linearly for the first warmupsteps training steps, and decreasing it thereafter
proportionally to the inverse square root of the step number. We used warmupsteps = 4000.

MRNAS —— 512-:4000
—— 512:8000

0.0008 —— 256:4000
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0.0004 1

0.0002 1

0.0000 1

L) A Al L} A
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e Adam

m0=0,v0=0

My <= Bimy + (1 = 1) VeL(0)

Vi1 = Bovr + (1 — B2)VeL(0)*

0, « 0 ‘

: = m

J J t+1
V Vi1 +1e?

Algo of Adam.

https://morioh.com/p/3f20600908f3

Momentum

RMS Prop

RMS Prop + Momentum

Fig. 6 Comparison of all optimization
algorithms. (Visualization)
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Label Smoothing

During training, we employed label smoothing of value €;; = 0.1 (cite). This hurts perplexity, as the model learns to be more

unsure, but improves accuracy and BLEU score.

We implement label smoothing using the KL div loss. Instead of using a one-hot target distribution, we
create a distribution that has confidence of the comect word and the rest of the smoothing mass

distributed throughout the vocabulary.

- 1.000 10° i
2101 £
_-'g 510—1
8 S
0 1072 2
E a.

10-3 L0

012 345¢6 789
01 2 3 456 7 8 9 Class Index

Class Index
(a) Hard Label (b) LS

https://towardsdatascience.com/label-smoothing-make-your-model-less-over-confident-b12ea6f81a9a 66



Computational Complexity: Quadratic in Length!

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k -n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Self-attention
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Why Transformers

e Everything is attention (and FFNNs), you can train much larger
networks if you have the right hardware (GPUs, TPUs) due to the
improved parallelism. So much cheaper than RNNSs.

e Downside: Only a few companies have the expertise and machine
power (TPUs rather than GPUs) and money to build large language

models.
o GPT-2: 1.5B parameters
o GPT-3: 175B parameters



Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)
Medsl EN-DE EN-FR EN-DE  EN-FR
ByteNet [15] 23.75
Deep-Att + PosUnk [32] 39.2 1.0 - 1020
GNMT + RL [31] 24.6 39.92 2.3-101%  1.4-10%°
ConvS2S [8] 25.16 40.46 9.6-101% 1.5-1020
MOoE [26] 26.03  40.56 2.0-10'% 1.2-10%°
Deep-Att + PosUnk Ensemble [32] 40.4 8.0 - 1020
GNMT + RL Ensemble [31] 26.30 41.16 1.8-10%° 1.1-102%t
ConvS2S Ensemble [8] 2636  41.29 7.7-101°  1.2-10%
Transformer (base model) 27.3 38.1 3.3.10'8

Transformer (big) 28.4 41.0 2.3: 10"




Model Variations

Table 3: Variations on the Transformer architecture. Unlisted values are identical to those of the base
model. All metrics are on the English-to-German translation development set, newstest2013. Listed
perplexities are per-wordpiece, according to our byte-pair encoding, and should not be compared to

per-word perplexities.

train | PPL BLEU params
N dmoda hode dv Parop s steps | (dev) (dev)  x106
base | 6 512 8 64 o4 0.1 0.1 100K | 492 2538 65
1 512 512 529 249
(A) 4 128 128 500 255
16 32 32 491 25.8
32 16 16 5.01 25.4
16 516 251 58
®) 32 501 254 60
2 6.11 23.7 36
4 519 253 50
8 488 255 80
© 256 32 32 575 245 28
1024 128 128 4.66  26.0 168
512 254 53
475 262 90
0.0 577 246
0.2 495 255
®) 0.0 467 253
0.2 547 257
E) positional embedding instead of sinusoids 4.92 25.7
big | 6 1024 4096 16 0.3 300K | 433 264 213
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Transformer-based Language Models

It is becoming the underlying architecture of most popular language models. Two
most famous are:

e GPT: OpenAl Transformer-based Language Models

e BERT: Google Transformer-based Language Models

e ROBERTa: Facebook Transformer-based Language Models
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Transformer beyond NLP

Transformer can also be used in many other applications: Vision, Speech,
Reinforcement Learning, ...

People even consider we no longer needs CNN/RNN or any other neural nets,
and Transformer is unifying many ML problems.

e Check Facebook's data2vec

e Check this Twitter post by Andrej Karpathy

"But as of approx. last two years, even the neural net architectures across all areas
are starting to look identical - a Transformer (definable in ~200 lines of PyTorch
github.com/karpathy/minGP ...), with very minor differences. Either as a strong
baseline or (often) state of the art."
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https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/2106.02039
https://ai.facebook.com/blog/the-first-high-performance-self-supervised-algorithm-that-works-for-speech-vision-and-text/
https://twitter.com/karpathy/status/1468370605229547522
https://t.co/xQL5NyJkLE

Reading

Annotated Transformers by Alexander M. Rush

The lllustrated Transformer by Jay Alammar
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https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://jalammar.github.io/illustrated-transformer/

