
Lecture 5. Transformers
(“Attention Is All You Need” Vaswani et al., 2017)

Spring 2023

1
Slides adapted from Mohit Iyyer

Outline
NLP

Contextualized Word Embeddings
Subword Tokenization
Byte-Pair Encoding
GPT, BERT, RoBERTa

ML
Transformer
Self Attention

2

Recall: RNN Encoder-Decoder; Attention; Self Attention

3

Recall: RNN Encoder-Decoder; Attention; Self Attention

4

Recall: RNN Encoder-Decoder; Attention; Self Attention

5

Attention Is All You Need (Vaswani et al., 2017)

6

Transformer

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Why Transformers
Incredibly powerful
when trained on
massive amounts of
natural language text.

NYT 11/24/2020

GPT-3
● Built by OpenAI (funded by Microsoft, Google, FB)
● Trained a Transformer to do standard language modeling, i.e. next word

prediction
● GPT-3 is a tremendously powerful text generator

It was openly released immediately…fearing misuse (e.g. fake news construction).

- GPT-2 was released in November of 2019. (Available via huggingface.com)

- GPT-3 (175billion) available via an API offered by Microsoft (not free). Now
Codex is free.

Transformers
● Introduced in Attention Is All You Need (Vaswani et al. NeurIPS 2017)

● A purely attention-based architecture (highly parallelizable), i.e. no recurrence

● Deep model for NLP (12 layers)

● Originally envisioned for seq2seq tasks (encoder is 6 layers, decoder is 6
layers). The encoder and decoder are the same “architecture” applied
differently

Transformer - Key Idea
In RNN, the first token is linked to next token, and so on, using RNN unit.

In Transformer, every token is linked to all other tokens using self attention.

10https://d2l.ai/chapter_attention-mechanisms/self-
attention-and-positional-encoding.html

Transformer - Architecture Overview

11

Transformer - Architecture Overview

12

Encoder

Transformer - Architecture Overview

13

Decoder

Encoder

Transformer - Self Attention

14

Transformer - Self Attention

15Figures from Emma Strubell

Transformer - Self Attention

16Figures from Emma Strubell

Transformer - Self Attention

17Figures from Emma Strubell

Q: Query
K: Key
V: Value

Transformer - Self Attention

18Figures from Emma Strubell

Q: Query
K: Key
V: Value

Transformer - Self Attention

19

Calculate Attention scores: between Q: Query and K: Key

Figures from Emma Strubell

Transformer - Self Attention

20

Each word is attended to all other words.

Figures from Emma Strubell

Transformer - Self Attention

21Figures from Emma Strubell

Transformer - Self Attention

22Figures from Emma Strubell

Transformer - Multi-Head Self Attention

23Figures from Emma Strubell

Transformer - Multi-Head Self Attention

24https://jalammar.github.io/illustrated-transformer/

Transformer - Multi-Head Self Attention

25https://jalammar.github.io/illustrated-transformer/

Transformer Layer

26Figures from Emma Strubell

Transformer

27Figures from Emma Strubell

Transformer – decoder side

28

Transformer - Architecture Overview

29

Decoder

Transformer – decoder side

30https://jalammar.github.io/illustrated-transformer/

Transformer – decoder side
● The self attention layers in the decoder operate in a slightly different way than the one

in the encoder:
○ In the decoder, the self-attention layer is only allowed to attend to earlier positions in the output sequence.

○ The “Encoder-Decoder Attention” layer works just like multiheaded self-attention, except it creates its Queries
matrix from the layer below it, and takes the Keys and Values matrix from the output of the encoder
stack.

31https://jalammar.github.io/illustrated-transformer/

Transformer – decoder side
● The Final Linear and Softmax Layer

32https://jalammar.github.io/illustrated-transformer/

Transformer – decoder side
● The Final Linear and Softmax Layer

33https://jalammar.github.io/illustrated-transformer/

● 🌟Illustrated-transformer by Jay
○ https://jalammar.github.io/illustrated-transformer/

34

Contextualized Word Embeddings
● Problems with word2vec/GloVe: single representation for each word.
● Contextualized Word Embeddings: representations depend on context.

35Figures from Emma Strubell

Other Components in Transformers
● Residual Connection
● Layer Normalization
● Masked Self Attention in Decoder
● Encoder-Decoder Cross Attention
● Sinusoidal Positional Encoding

36

Residual Connection

37

Residual Connection (He et al., 2016)
● Add input to its output

https://arxiv.org/abs/1512.03385

Layer Normalization

38

Layer Normalization (Ba et al., 2016)

https://arxiv.org/abs/1607.06450

Residual Connection & Layer Normalization
● To put them together

39

Masked Self Attention in Decoder
● In encoder, we can always look at all input words.
● In decoder, we can only look at previous words.

○ That means, we need to "mask" future words when
performing attention.

○ Words are blocked for attending to future words during
training.

40

Encoder-Decoder Cross Attention
● Attention between encoder self-attention outputs

and decoder masked self attention outputs.

41

Positional Encoding

42

● There is no recurrence (RNN) and no convolution (CNN).
● Self-attention do not have order information.
● So we need positional encoding to bring position information.

Sinusoidal Positional Encoding

43

● There are many different choices of positional encodings (Gehring et al., 2017)
○ some are learned (BERT, Devlin et al. 2018) and some are fixed
○ some for relative position and some for absolute position.

● In Transformer, we use Sinusoidal position encodings: fixed embeddings and can
generalize to any sequence length.

https://arxiv.org/pdf/1705.03122.pdf

Sinusoidal Positional Encoding

44

● There are many different choices of positional encodings (Gehring et al., 2017)
○ some are learned and some are fixed
○ some for relative position and some for absolute position.

● In Transformer, we use Sinusoidal position encodings: fixed embeddings and can
generalize to any sequence length.

● Intuition: (4-dimensional position encodings for 16 positions)

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

https://arxiv.org/pdf/1705.03122.pdf

Sinusoidal Positional Encoding

45https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

4-dimensional position
encodings for 16 positions

Sinusoidal Positional Encoding

t: position index
i: dimension index
d: total dimension

46https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Sinusoidal Positional Encoding - Properties
● It should output a unique encoding for each time-step (word’s position in a

sentence)
● Distance between any two time-steps should be consistent across sentences

with different lengths.
● Our model should generalize to longer sentences without any efforts. Its

values should be bounded.
● It must be deterministic.

47https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional Encoding

● “Attention is all you need”: Our model should generalize to longer sentences without
any efforts. Its values should be bounded. Deterministic

● There are many different choices of positional encodings (Gehring et al., 2017)
○ some are learned❓

48

https://arxiv.org/pdf/1705.03122.pdf

Other Tricks in Transformers
● Subword Tokenization
● Optimizer
● Label Smoothing

49

OOV Issue
How to handle unknown words, i.e., a word at test time that we’ve never seen in
our training data. It is also called OOV (out-of-vocabulary) words.

If we use word-level tokenization, we cannot have an index for unknown words,
and we cannot have a word embedding for unknown words.

50

OOV Issue
Old solution: replace low-frequency words in training data with a special token
<UNK>; then after training, we have a word embedding for <UNK>; if we have an
unknown word during testing, we replace it with <UNK>.

New solution: Subword tokenization.

51

Subword Tokenization
Use Subword Units for tokenization.
Based on a simple algorithm called byte pair encoding (Gage, 1994).
First used successfully for NLP for machine translation by (Sennrich et al., 2016).

52

Byte Pair Encoding
Perform pre-tokenization

Form a base vocabulary: b, g, h, n, p, s, u
53https://huggingface.co/transformers/tokenizer_summary.htmlSlides Credit: Mohit Iyer

Byte Pair Encoding
Count all the character pair.

54https://huggingface.co/transformers/tokenizer_summary.htmlSlides Credit: Mohit Iyer

Byte Pair Encoding
Count all the character pair.

55https://huggingface.co/transformers/tokenizer_summary.htmlSlides Credit: Mohit Iyer

Byte Pair Encoding
Merge the most frequent character pair, i.e., ug, and add it to the vocabulary.
Then rotokenize and repeat this process.
The next to merge is ❓

56https://huggingface.co/transformers/tokenizer_summary.htmlSlides Credit: Mohit Iyer

Byte Pair Encoding
Merge the most frequent character pair, i.e., ug, and add it to the vocabulary.
Then rotokenize and repeat this process.
The next to merge is un, so we add un to the vocabulary.

57https://huggingface.co/transformers/tokenizer_summary.htmlSlides Credit: Mohit Iyer

Byte Pair Encoding
Repeat until some fixed number of merges, or until we reach a target vocab size.

new vocab: b, g, h, n, p, s, u, ug, un, hug

58https://huggingface.co/transformers/tokenizer_summary.htmlSlides Credit: Mohit Iyer

Byte Pair Encoding
To avoid OOV, all possible characters / symbols need to be included in the base
vocab.
● This can be huge if including all unicode characters (size 144,697)!
● GPT-2 uses bytes as the base vocabulary (size 256) and then applies BPE

on top of this sequence (with some rules to prevent certain types of merges).
● GPT-2 has a vocabulary size of 50,257, which corresponds to the 256 bytes

base tokens, a special end-of-text token and the symbols learned with 50,000
merges.

Commonly have vocabulary sizes of 32K to 64K

59Slides Credit: Mohit Iyer

Encoding and Decoding
Encoding
● Sort the vocab from longest subwords to shortest subwords.
● Go through the vocab, and replace the longest subword first.
● This is very computationally expensive.
● In practice, we can cache how popular words are encoded.

Decoding
● In fact, how to determine word boundaries.

60

Encoding and Decoding
Encoding
● Sort the vocab from longest subwords to shortest subwords.
● Go through the vocab, and replace the longest subword first.
● This is very computationally expensive.
● In practice, we can cache how popular words are encoded.

Decoding
● In fact, we will add </w> to each word to indicate word boundaries.
● For example, if the encoded sequence is [“the</w>”, “high”, “est</w>”,

“moun”, “tain</w>”], we immediately know the decoded sequence “the highest
mountain</w>”.

61

Other subword Tokenization
Byte Pair Encoding

● merge by frequency
● used by GPT-2.

WordPiece (Schuster et al., 2012)
● merge by likelihood given by language models, not by frequency
● used by BERT.

SentencePiece (Kudo et al., 2018)
● All tokenization algorithms described so far have the same problem: It is assumed that

the input text uses spaces to separate words. However, not all languages use spaces
to separate words.

● SentencePiece can train subword models directly from raw sentences
62

Can we don't do tokenization at all?
Old solution: use <UNK>.

New solution: Subword tokenization

New New solution: tokenizer-free and directly operate on bytes!
● CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language

Representation. (Clark et al, 2022)
● ByT5: Towards a token-free future with pre-trained byte-to-byte models.

63

https://arxiv.org/pdf/2103.06874.pdf
https://arxiv.org/pdf/2103.06874.pdf
https://arxiv.org/pdf/2105.13626.pdf

Optimizer
Adam Optimizer with Linear Warmup Learning Rate

64

● Adam

65https://morioh.com/p/3f20600908f3

Fig. 6 Comparison of all optimization
algorithms. (Visualization)

Algo of Adam.

Label Smoothing

66https://towardsdatascience.com/label-smoothing-make-your-model-less-over-confident-b12ea6f81a9a

Computational Complexity: Quadratic in Length!

67

Why Transformers
● Everything is attention (and FFNNs), you can train much larger

networks if you have the right hardware (GPUs, TPUs) due to the
improved parallelism. So much cheaper than RNNs.

● Downside: Only a few companies have the expertise and machine
power (TPUs rather than GPUs) and money to build large language
models.

○ GPT-2: 1.5B parameters
○ GPT-3: 175B parameters

Results

69

Model Variations

70

Transformer-based Language Models
It is becoming the underlying architecture of most popular language models. Two
most famous are:
● GPT: OpenAI Transformer-based Language Models
● BERT: Google Transformer-based Language Models
● RoBERTa: Facebook Transformer-based Language Models

71

Transformer beyond NLP
Transformer can also be used in many other applications: Vision, Speech,
Reinforcement Learning, ...

People even consider we no longer needs CNN/RNN or any other neural nets,
and Transformer is unifying many ML problems.
● Check Facebook's data2vec
● Check this Twitter post by Andrej Karpathy

"But as of approx. last two years, even the neural net architectures across all areas
are starting to look identical - a Transformer (definable in ~200 lines of PyTorch
https://github.com/karpathy/minGPT/blob/master/mingpt/model.py…), with very minor differences. Either as a strong
baseline or (often) state of the art."

72

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1904.05862
https://arxiv.org/abs/2106.02039
https://ai.facebook.com/blog/the-first-high-performance-self-supervised-algorithm-that-works-for-speech-vision-and-text/
https://twitter.com/karpathy/status/1468370605229547522
https://t.co/xQL5NyJkLE

Reading
Annotated Transformers by Alexander M. Rush

The Illustrated Transformer by Jay Alammar

73

https://nlp.seas.harvard.edu/2018/04/03/attention.html
https://jalammar.github.io/illustrated-transformer/

